Bowtie
Bowtie is a risk assessment tool that represents risks and barriers in a diagram that is used for communication. It is a causal diagram, which means the diagram models risk scenarios that might happen, and identifies which barriers control that particular scenario. The method takes its name from the shape of the diagram that you create, which looks like a men’s bowtie.
Tripod Delta
Tripod Delta is a questionnaire tool that measures the Basic Risk Factors (BRF). These are eleven high level organizational factors which indicate the parts of the organization that require attention. It is not a causal method. It just identifies how weak an organization is on these eleven categories.
Tripod Beta
Tripod Beta is an incident analysis tool. It is a causal diagram that models both the direct accident sequence, the barriers that should have been in place and the reasons for barriers not to work. The underlying causes that make the barrier fail are also categorized using the same eleven BRF’s as Tripod Delta.
2. Bowtie & Tripod
To combine these three methods requires an overview of how they relate to each other. Both Tripod Beta and Tripod Delta can be viewed as data collection methods. They provide us with incident and audit data. Bowtie on the other hand, can be viewed as a framework or structure that models the risks and control measures in an organization without providing empirical data.
Treating the Bowtie as the central model, into which both Tripod Delta and Beta feed data to monitor the structure defined in the Bowtie, will create a combination of these methodologies. The main reason for doing this is to combine different types of information into one overview. This allows us to see new patterns that were not apparent when using these tools in isolation.
But there are several challenges that need to be dealt with first. In general, the challenges stem from structural and philosophical differences in these various methods. For instance, Tripod Beta is much more specific than Bowtie in its description of events, but also structures causal relationships more specifically. Tripod Delta on the other hand, goes to the other extreme and focuses solely on basic risk factors. It does not link to specific risks at all. These differences mean we need to do some mapping to combine these methods. The next sections will explain what needs to happen before Bowtie can use the information from Tripod Beta and Delta.
3. Bowtie & Tripod Beta
The main challenge when combining Bowtie with Tripod Beta, or indeed any risk assessment method with an incident analysis method, is that Bowtie is on a higher level, whereas Tripod Beta is more specific. This is most evident in two areas: language use and structure.
The language used in incident analysis is more specific than in Bowtie, even though they might relate to the same concept. For instance, in Tripod Beta, one might talk about a single smoke detector, whereas in Bowtie, it would be more common to talk about a fire fighting system. This difference in language use is unavoidable, and currently the mapping between them is manual.
On a structural level, Tripod Beta has a more strict treatment of where barriers are placed. For instance, in Bowtie, a barrier can be placed before an event, whereas it takes an effect after the event (and the other way around). This is not allowed in Tripod Beta, which means the placement of barriers can be different when looking at a Bowtie or Tripod diagram on the same subject.
Both language use and placement of barriers cannot be changed. They are inherent to both methods and part of the reason why they work. But even though we can’t change those aspects of the methods, we still want to minimize the mapping difficulty between Tripod Beta and Bowtie. There is one last structural difference that can be made more compatible: the causality model.
Causality between events is modeled differently in Bowtie and Tripod Beta. Bowtie has a simple model where an event can cause the next event. Tripod splits the first event out into an agent (the source of change) and an object (the object being changed), which come together to shape the next event. Looking at both these models for causality, we take the most complex one (Tripod Beta) to analyze when the addition of an object is useful and when it is not.
There are situations when objects can be a useful addition to an incident analysis. First, when there are multiple stories coming together which cannot be correctly displayed in a single causal line. This is also important when investigating multiple storylines. An example could be a fire, where we want to investigate both the source of ignition, and why the fuel was available. This is difficult to do in a single causal line, and will quickly lead to mistakes in the causal model (for instance, saying that the presence of fuel caused the ignition source, which is obviously not the case). Secondly, adding an object can be beneficial to force an analytical way of thinking when we want to make sure we think about both the affecter and the affected.
There are also situations in which objects are not useful and can actually become obstructions. First, when the object does not help us to analyze our incident, but becomes an obligation to adhere to. It can cause confusion if the incident being investigated does not require an object to be understood correctly and can actually lead to non-sense objects being created just to adhere to the rules. Secondly, when the communication of what happened in an incident becomes more complicated than it needs to be to understand it. Complexity should not be added for the sake of complexity, but only in proportion to what is necessary to achieve some desired level of understanding. We can always add more complexity and more detail to any model. What we need to keep in mind is what goal we hope to achieve and what level of complexity is best served to achieve that goal. This is very clearly the case in incident investigation, where there is often a lot of information and complexity. The correct approach would be to investigate an incident thoroughly, and then condense it to its core. Sometimes an object can help us do that, but sometimes it adds unnecessary complexity.
Because of this, we propose to make objects optional. This small change to the Tripod Beta method will reduce the difficulty of mapping onto a Bowtie, and at the same time also creates easier to understand and build Tripod Beta diagrams. If needed, an object can be added, but if it is not necessary, the object can be omitted.
4. Bowtie & Tripod Delta
The challenge with Tripod Delta is to map high-level organizational categories to specific barriers. This section will discuss two issues that will allow us to make the results of Tripod Delta more illustrative by using the Bowtie.
Defences
The first discussion focuses on the use of Defenses as a Basic Risk Factor. The definition given in the Tripod user guide (Tripod-Foundation, 2008) is: ‘Failures in the systems, facilities and equipment for control or containment of source of harm or for the mitigation of the consequences of either human or component failures’. This has a lot of similarities to the definition of a normal safety barrier as it is defined by Sklet (2006): ‘Safety barriers are physical and/or non-physical means planned to prevent, control or mitigate undesired events or accidents’. From the similarities between these two definitions, we can conclude that Defenses as a category is mostly concerned with barriers that are used in operations and less with a higher level organizational factor. Bowtie explicitly identifies these barriers, whereas Tripod Delta aggregates them into a single score. Defenses are so closely related to barriers in Bowtie that we can treat Defenses separately from the rest of the Basic Risk Factors. Bowtie provides a framework for the questions, which used to be grouped under Defenses, to be linked directly to individual barriers in the Bowtie. We can go back to the original idea of Defenses, as a separate category from the other ten (see Figure 2 and table 1). This also means that Defenses in Tripod Beta should not be used to categorize underlying causes. They correspond to the barriers in Tripod Beta as well.